Остались вопросы?Задайте их
в разделе
вопросы
Вопросов:7194
Ответов:31286

5 лучших пособий подготовки к ЕГЭ по математике

09 Август 2017
Тематика: математика, Репетитор, ГИА, ЕГЭ, подготовка к ЕГЭ

На главную

Автор статьи: Потемкина Алевтина

Единый государственный экзамен в нашем регионе проводится с 2005 г. За прошедшее с тех пор время перепробовала много книг при подготовке обучающихся к экзамену. На сегодняшний день могу назвать свою пятерку лучших, по моему мнению, пособий.

1. Семенов А. В. Единый государственный экзамен. Математика. Комплекс материалов для подготовки учащихся. Учебное пособие. 2017 г.

В электронном виде можно скачать здесь http://www.alleng.ru/d/math/math2108.htm

Состоит из двух частей. В первой части задания разбиты по темам, вторая часть содержит 24 тренировочных варианта (12 вариантов профильного уровня, 12 вариантов базового уровня). Содержание пособия сформировано с использованием обновленного открытого банка заданий, соответствует современным требованиям ЕГЭ. Пособие разработано при научно-методической поддержке ФИПИ.

Переплет мягкий, бумага серая, иллюстрации черно-белые. Структура и содержание данного пособия дают возможность использовать его и при самоподготовке, и при организации повторения в классе. Задания в основном даются парами, что позволяет одно из них разобрать коллективно, а другое решить самостоятельно.

В пособии предложены задания разного уровня. Шире представлены базовые задания. В разделе «Задачи повышенной сложности» авторы, не претендуя на полноту, дают представление о заданиях повышенного и высокого уровня. В конце сборника указаны ответы ко всем заданиям и вариантам, комментарии отсутствуют. Разобраны задания с развернутым ответом для одного из вариантов. Тесты составлены в соответствии со спецификацией и демоверсией текущего года. Пособие содержит справочный материал, входящий в КИМ базового уровня.

По мнению авторов, пособие может быть использовано с 6 класса. Из опыта работы советую начинать работу с 10 класса. Содержание пособия позволит повторить темы основной школы и подготовиться к экзамену на базовом уровне. Тогда в 11 классе можно сосредоточиться на подготовке к профильной математике. Работа с данной книгой позволит отработать 13-15 заданий, что соответствует 70-80 баллам. Книга сравнительно недорогая, работа по ней продуктивная. К сожалению, встречается достаточно много опечаток в тексте заданий и ответах.

 

2. Коннова Е.Г. Математика. Базовый уровень ЕГЭ-2014. Пособие для «чайников». 2011 год.

Данная книга входит в учебно-методический комплекс «Математика. Подготовка к ЕГЭ» под редакцией Ф.Ф. Лысенко. Среди заданий с кратким ответом есть задачи, в которых школьники ежегодно допускают ошибки. Пособие позволяет усилить работу по данным направлениям. Книга предназначена для формирования устойчивых навыков в решении заданий базового уровня. Выделены пять наиболее проблемных тем: «Вычисления и преобразования», «Производная и исследование функций», «Прикладные задачи», «Наибольшие и наименьшие значения функций» и «Построение и исследование математических моделей». В каждой теме доступно разобраны типовые задания из открытого банка, предложены задачи для самостоятельного решения. Книга так же содержит 12 тренировочных вариантов.

Переплет мягкий, бумага серая, иллюстрации черно-белые. Скачать в электронном виде здесь http://alleng.pro/d/math/math727.htm

В начале каждой темы систематизирован теоретический материал. Содержание соответствует кодификатору ЕГЭ. В конце книги ответы ко всем заданиям и вариантам. Комментарии отсутствуют. Тесты сформированы по заявленным пяти темам. Уровень заданий в тестах соответствует разобранным в темах заданиям.

С данным пособием можно начинать работу уже в 10 классе. Более подготовленные школьники могут самостоятельно разобрать готовые решения и выполнять задания для самопроверки. Для обучающихся с недостаточным уровнем подготовки следует разобрать готовые решения в классе или с репетитором, а следующие за ними задания предложить для домашней работы.

Цена пособия соответствует его пользе. Нередко обучающиеся, претендующие на высокие баллы, допускают 1-2 ошибки в заданиях базового уровня. Работа с данным пособием позволяет снизить число ошибок за счет совершенствования навыков решения типовых задач.

 

3. Панферов В.С., Сергеев И.Н. Отличник ЕГЭ. Математика. Решение сложных задач. 2012 год.

Скачать в электронном виде можно здесь http://www.alleng.ru/d/math/math433.htm

Большее число баллов на ЕГЭ профильного уровня обеспечивают задания с развернутым ответом. Данное пособие обеспечивает подготовку к такого рода заданиям. Изложение материала доступно учащимся с высоким уровнем подготовки.

Переплет мягкий, бумага белая, иллюстрации черно-белые.

В пособии представлены разобранные решения заданий, комментарии и критерии оценки, задачи для самостоятельного решения, подготовительные задачи и список литературы для самостоятельной подготовки к экзамену. Подготовительные задания более простые в сравнении с тренировочными, что позволяет организовать работу на элективных занятиях по нарастанию уровня сложности.

Работать с данным пособием лучше в 11 классе. Книга небольшая, но очень полезная. Повышает шансы получить самые высокие баллы.

 

4. Колесникова С. И. Математика. Интенсивный курс подготовки к единому государственному экзамену. 2008г.

Скачать в электронном виде здесь http://www.alleng.ru/d/math/math265.htm

Переплет мягкий, бумага серая, иллюстрации черно-белые.

В пособии собраны эффективные методы решения сложных уравнений и неравенств. Книга доступна учащимся с хорошим уровнем подготовки, претендующим на высокие результаты. И хотя издана давно, но полезность ее не уменьшилась. Рассматриваемые в пособии подходы в основном отсутствуют в школьных учебниках. Книга содержит два раздела. В разделе «Эффективные методы решения основных типов задач алгебры и анализа» рассмотрены понятие равносильности, метод рационализации и другие методы решения нестандартных уравнений и неравенств. Во втором разделе - 20 вариантов, решение многих заданий, двух полных вариантов.

Для каждого типа уравнений систематизирован теоретический материал, правила иллюстрируются готовыми решениями с комментариями автора. Следует отметить глубокую проработку тем.

Тренировочные варианты не соответствуют современной структуре профильного ЕГЭ по математике, но это ни сколько не умаляет их достоинства. Задания с развернутым решением предполагают умение школьников переносить знания в новую нестандартную ситуацию. Книга Колесниковой С. И. дает такую возможность. Рекомендую для работы репетитора с учащимися с высоким уровнем подготовки.

 

5. Вольфсон Б. И. Геометрия. Подготовка к ЕГЭ и ГИА-9. Учимся решать задачи и повторяем теорию. 2013 год.

Электронную версию можно найти здесь http://www.alleng.ru/d/math/math1094.htm

Не секрет, что наибольшее затруднение обучающиеся испытывают при решении геометрических задач. Данное пособие в доступной форме предлагает технологию обучения решения задач.

Переплет мягкий, бумага серая, иллюстрации черно-белые.

Второе, существенно переработанное издание книги соответствует измененной структуре и содержанию ЕГЭ по математике. Каждый технологический шаг иллюстрирован решениями задач из открытого банка заданий ФИПИ. Проведен анализ геометрических заданий ОГЭ И ЕГЭ. Есть справочный материал, задания для самостоятельной работы. В конце книги приведены ответы без комментариев.

Книга полезна не только учащимся, но и педагогам. Предложенную технологию работы с геометрическими задачами можно реализовать на уроках, начиная с 8 класса. Она позволяет снять страх перед задачами из геометрии, сформировать навыки анализа данных и составления плана решения задачи.

Книгу Вольфсон Б. И. открыла для себя только в этом учебном году, но предполагаю, что углубленная работа над ее содержанием позволит повысить школьникам баллы за счет решения задач № 14 и № 16 с развернутым решением.


Источник: «Моё образование». При использовании материала ссылка на статью обязательна.
Следите за важными новостями образования в нашей группе ВКонтакте:
Знаете ли вы...

В теории чисел существует число, которое является натуральным числом множества, генерируемого «решетом», аналогичным решету Эратосфена, которое генерирует простые числа.

Начнем со списка целых чисел, начиная с 1:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,

Каждое второе число (все четные числа) исключается, остается только нечетные числа:

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25,

Второй член в этой последовательности 3. Каждое третье число, которое остается в списке, исключается:

1, 3, 7, 9, 13, 15, 19, 21, 25,

Теперь третье оставшееся число это 7, поэтому каждый седьмой номер, который остался, исключается:

1, 3, 7, 9, 13, 15, 21, 25,

Такие числа называются:

Комментарии (0)

Оставить комментарий
Ваше имя:
Войти через: